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ACTIVE WING FLUTTER SUPPRESSION USING
A TRAILING EDGE FLAP

D. BORGLUND AND J. KUTTENKEULER

Department of Aeronautics, Kungliga Tekniska HoKgskolan
SE-100 44 Stockholm, Sweden

(Received 10 May 2000, and in "nal form 22 August 2001)

The aeroservoelastic behaviour of a thin rectangular wing with a controllable trailing edge #ap
is investigated. A rather high aspect ratio motivates a numerical model based on linear beam
theory for the structural dynamics and strip theory for the unsteady aerodynamic loads.
Experimental #utter testing shows good agreement with the numerical stability analysis, and
the impact of the trailing edge #ap on the dynamics is veri"ed by open-loop testing. The
problem of stabilizing the wing utilizing the trailing edge #ap is posed, and the design of
a "xed-structure feedback controller is performed using numerical optimization. The problem
of maximizing closed-loop modal damping with constraints on actuator performance is solved
for a sequence of #ow speeds and the obtained controller is synthesized using gain scheduling.
The fairly large predicted increase in critical speed is experimentally veri"ed with satisfactory
accuracy. � 2002 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

CTIVE FLUTTER SUPPRESSION is true multidisciplinary analysis and design, involving the
nteraction between elastic structures, unsteady #uid-dynamic forces and control systems.
n aircraft structures, the problem of active wing #utter suppression has received much
ttention. Typically, an unsteady potential #ow model is combined with a linear structural
nalysis to obtain a tool useful for control law design. The main di$culty from a control
oint of view lies in the representation of the unsteady aerodynamic loads. The classical
pproach to #utter analysis (Bisplingho! et al. 1996) is based on frequency-domain aerody-
amic loads, computed for simple harmonic motion. This representation can only be
ssumed accurate close to the #utter boundary, and in general aerodynamic loads for
rbitrary motion are required to accurately predict the aeroelastic response and control
ystem performance. The frequency-domain aerodynamic loads are most commonly gener-
lized using rational function approximations of the exact representation.
To exemplify the signi"cant e!ort devoted to theoretical studies, Edwards et al. (1978)

nd Karpel (1982) focus on the development and use of rational function approximations
or the purpose of aeroelastic control. Improved gust response and increased #utter stability
re demonstrated for typical section type of systems. Luton & Mook (1993) combine
general unsteady vortex-lattice method with a nonlinear structural model of a cantilever
ing, to perform time-domain simulations of the resulting nonlinear aeroelastic system.
hile this approach eliminates the need for frequency-domain aerodynamics, it prevents

he use of the vast #ora of linear control techniques. By trial-and-error tuning of a simple
ontroller, the #utter speed is signi"cantly increased in the simulations.
In contrast, experimental demonstrations of successful closed-loop #utter suppression are

are. Experimental results on typical section type of systems are presented by Heeg (1993)
889}9746/02/030271#24 $35.00/0 � 2002 Elsevier Science Ltd. All rights reserved.
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and Vipperman et al. (1998). Utilizing piezoelectric actuation, Heeg demonstrated a 20%
increase of the #utter speed in wind tunnel testing. In this case, a simple single-input
single-output feedback controller was used, and the analysis and design was based on
rational function approximations for the aerodynamics. Vipperman et al. use experimental
system identi"cation in the subcritical regime and robust control law design to extend the
#utter boundary by roughly 10% in the experiment.

The more di$cult system of a cantilever wing has been investigated experimentally by, for
example, Ghiringhelli et al. (1990). The capability of a straightforward eigenvalue assign-
ment technique for control law design, based on a p}k approximation of the #utter
equations, was demonstrated by signi"cantly increasing the damping of a wing model with
an actuated aileron. Substantial increase of the #utter speed was also indicated but could
not be veri"ed due to a speed limitation in the wind tunnel test. While producing simple and
reliable control laws, the determination of the best location of the #utter eigenvalues is
concluded to be nontrivial.

Among the more extensive e!orts is the active #exible wing program at the NASA
Langley Research Center. This program considered an actively controlled, statically and
aeroelastically scaled, full-span wind tunnel model. Once again, linear "nite element
analysis was combined with a rational function approximation for the aerodynamics.
Ultimately, #utter suppression while performing rapid rolling manoeuvers was demon-
strated. Although an objective of the program was to use multivariable control methods, it
was also concluded that classical methods were su$cient. The classical approach was
completed well in advance of the optimization-based e!orts and succeeded in meeting the
program objectives. A summary of the classical design and further references can be found
in Waszak & Srinathkumar (1995).

The more recent Benchmark Active Control Technology program at NASA is another
extensive e!ort which deals with a multivariable typical section type of wind tunnel model
in the subsonic and transonic regimes. This program has provided the aeroelastic research
community with many tractable experimental results on unsteady aerodynamics and
performance of various control methods. Since the "rst submittal of this paper, 18 related
papers have been published in special sections of the Journal of Guidance, Control and
Dynamics (Mukhopadhyay 2000a, b, 2001), of which a survey is highly recommended.

This study focusses on the #utter stability of a cantilever #exible wing in low-speed
air-#ow. Of particular interest is the possibility of suppressing an unexpected second
bending and "rst torsion type of instability, as opposed to the classical mode often
encountered in other studies. Unexpected instability phenomena like this should be identi-
"ed, investigated and guarded against. If encountered, however, active control is one option
for recovery of the initially predicted performance. The simplicity of the structural design
and control system components allows for an almost complete presentation of the aeroser-
voelastic design process, including the modelling of frequency-domain aerodynamic forces,
identi"cation of actuator dynamics and compensation for delays in the digital control
system.

An approach similar to the eigenvalue assignment technique by Ghiringhelli et al. (1990)
is adopted for the control law design. With this approach, good performance may be
obtained using simple control laws, which simpli"es implementation and reduces risk.
Constrained nonlinear optimization is used to design a "xed-structure controller by shifting
the closed-loop p}k eigenvalues obtained from a linear aeroservoelastic stability analysis.
Since only performance in terms of stability is considered, a frequency-domain representa-
tion of the aerodynamic loads is considered su$cient. Being quite similar to techniques
applied in aeroelastic tailoring (Kuttenkeuler & Ringertz 1998a), it is also concluded that
great care must be taken when using optimization for design.
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Experimental veri"cation of the accuracy of the aeroservoelastic analysis and control law
design is emphasized. Of particular experimental interest was the possibility of using
a non-contact optical measurement system to monitor the elastic deformation of the wing.
The present system has been proven very useful in various aeroelastic wind-tunnel experi-
ments [see, for example, Kuttenkeuler (2000)], but is for the "rst time at KTH used for
real-time closed-loop control. The results presented in this paper are also part of the "rst
author's Ph.D. thesis (Borglund 2000).

2. AEROSERVOELASTIC MODELLING

The aeroservoelastic system to be investigated in the present paper is illustrated in Figure 1.
A cantilevered thin elastic wing with a rectangular planform is subjected to unsteady
aerodynamic loads due to low-speed air-#ow. At some su$ciently high #ow speed, the wing
will su!er a divergence or #utter-type aeroelastic instability.

As shown in the "gure, the wing is equipped with a controllable trailing edge #ap, or
aileron. The idea to be exploited is that by proper control of the aileron, the operating range
of the wing (in terms of aeroelastic stability) may be extended without weight penalty.

2.1. EQUATIONS OF MOTION

The planform of the wing}aileron assembly is given by the wing semispan l and semichord
b, and the aileron length l

�
and semichord b

�
. The wing structure consists of a thin elastic

plate with constant thickness h. The wing is assumed to have such a high aspect ratio that
the small-amplitude motion is modelled with su$cient accuracy using a linear Euler-type
beam model. Using this approximation, the wing is divided into the inner partition
04y(l!l

�
and the outer partition l!l

�
4y4l, between which the location of the

elastic axis di!ers by a distance e"b
�
due to the aileron cut-out (see Figure 1). The beam

approximation is based on the assumption that the wing is chordwise rigid, and the
deformation of the wing is thus described by the de#ection w(y, t) and twist angle �(y, t) of
the elastic axis, where t denotes time.
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Figure 1. A cantilever wing in low-speed air-#ow.
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The aileron has the same thickness as the wing but is considered rigid, with mass m
�
. It is

attached to the wing with an inner hinge at y"l!l
�
and an outer hinge at y"l. Assuming

ideal hinges and that the hinge axis is free to slide at the inner hinge, the aileron assembly
will not contribute to the structural sti!ness for small elastic deformations of the wing.
Hence, only the transfer of inertial and aerodynamic loads from the aileron to the wing is
considered. The aileron hinge moment is assumed to be transferred to the wing at the wing
tip (y"l), where an actuator speci"es the aileron de#ection �(t). The actuator assembly
clamped to the wing tip is modelled rigid (assumed to have no aerodynamic in#uence) with
mass m

�
and principal mass moments of inertia J

�
, J

�
and J

��
, respectively, with the centre

of mass located at coordinates x
�
and y

�
relative to the elastic axis at the wing tip (see

Figure 1).
Assuming Kelvin}Voigt-type structural damping, the linear equations of motion for each

wing partition may be written in the form

m
�
wK !m

�
s�G#D*

�
wR ��#D

�
w��"¸

�
, (1)

J��G!m
�
swK !D*� �Q �!D���"M�, (2)

where a prime denotes di!erentiation with respect to y and a dot with respect to t. The wing
mass and mass-moment of inertia per spanwise unit length are denoted m

�
and J�,

respectively. Although included in the equations of motion for completeness, there is no
inertial bending}torsion coupling in the present case since the di!erence between the
chordwise locations of the inertial axis and the elastic axis is s"0. The wing bending and
torsional sti!nesses are represented by D

�
and D�, while D*

�
and D*� are coe$cients

determining the structural damping. Finally, ¸
�
(y, t) andM� (y, t) are the applied force and

pitching moment per unit length.
The applied loads are composed of unsteady aerodynamic loads on the wing itself (both

partitions) and inertial as well as aerodynamic loads from the aileron (transferred through
the hinges to the outer partition). Given the applied loads, the equations of motion for the
inner and outer wing partitions are coupled through the kinematic constraints

w
�
(t)"w

�
(t)!e�

�
(t), (3)

w�
�
(t)"w�

�
(t), �

�
(t)"�

�
(t), (4, 5)

at y"l!l
�
, where the subscript &&1'' refers to the inner partition and &&2'' to the outer.

The boundary conditions for the cantilever wing at y"0 are simply

w"w�"�"0, (6)

while the boundary conditions de"ning the transverse force and moments at the wing tip
are

D*
�
wR ���#D

�
w���#m

�
wK #m

�
y
�
wK �!m

�
x
�
�G"0, (7)

D*
�
wR �#D

�
w�#m

�
y
�
wK #(J

�
#m

�
y�
�
)wK �!(J

��
#m

�
x
�
y
�
) �G"0, (8)

!D*� �Q �!D���!m
�
x
�
wK !(J

��
#m

�
x
�
y
�
)wK �#(J

�
#m

�
x�
�
) �G"0, (9)

which correspond to the inertia forces from the actuator assembly.
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2.2. WING-AILERON COUPLING

While the described aileron assembly has advantages from a mechanical and structural
modelling point of view, aerodynamic concerns are introduced. Even if air-#ow through
a small gap between the wing trailing edge and the aileron leading edge is prevented,
bending of the wing may result in a chordwise step at the wing}aileron intersection
(indicated in Figure 1). Another, perhaps more important, elastic coupling is that torsional
deformation introduces a local aileron de#ection. In addition to the motion speci"ed by the
actuator at y"l, the aileron will rotate with the wing tip (independently of the local twist
angle). Accounting for this and considering that the local aileron de#ection is de"ned
relative to the local twist angle � (y, t), the local aileron de#ection �* (y, t) (see Figure 1) is
given by

�*(y, t)"��(t)#�
�
(t)�!� (y, t), (10)

where �
�
(t)"�(l, t) is the twist angle at the wing tip.

A "rst-order approximation of the elastic coupling is obtained by considering the free
vibrations of the cantilever wing when l

�
�l. The elastic deformation of the outer wing

partition can then be assumed linear,

w(y, t)"w
�
(t)#��w

�
(t)!w

�
(t)�, (11)

�(y, t)"�
�
(t)#���

�
(t)!�

�
(t)�, (12)

where �"�y!(l!l
�
)�/l

�
3[0, 1] is the scaled local length coordinate shown in Figure (1)

and w
�
(t)"w(l!l

�
, t), w

�
(t)"w(l, t), etc. The approximate deformation described by equa-

tions (11) and (12) is indicated by the dashed boundary in Figure 1. Clearly, such a deforma-
tion will not result in any chordwise step. Hence, a reasonable approximation is to neglect
the in#uence due to a possible chordwise step and use

�*(y, t)"� (t)#(1!�) ��
�
(t)!�

�
(t)� (13)

for the true local aileron de#ection, obtained by inserting equation (12) into (10).

2.3 AERODYNAMIC MODEL

Justi"ed by the high aspect ratio, Theodorsen's two-dimensional theory in the frequency
domain (Theodorsen 1935) is used for the unsteady aerodynamic loads. Theodorsen derives
the lift ¸(t) and pitching moment M(t) on a two-dimensional thin airfoil, oscillating with
frequency � in an air-#ow with freestream velocity u and density 	. In terms of the set of
variables q(y, t)"�w � �*�, the result can be written in the form

¸(y, t)"
�
�
���

	 (¸qK
�
qK
�
#u¸qR

�
qR
�
#u�¸q

�
q
�
) (14)

and a corresponding expression for the moment M(y, t). The lift coe$cients �¸qK
�
¸qR

�
¸q

�
�

depend on the semichord b, the reduced frequency of oscillation k"�b/u, the distance from
the midchord to the elastic axis (b

�
) and the distance from the midchord to the aileron hinge

axis (b!2b
�
). The same holds for the moment coe$cients �MqK

�
MqR

�
Mq

�
�.

A direct use of Theodorsen's lift and moment in the equations of motion represents
a model where the aerodynamic load on the aileron is transferred to the wing along the
wing}aileron intersection. This is a convenient approximation for the actual load transfer,
but a slight rearrangement of Theodorsen's result provides a two-dimensional formulation
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which can be used for modelling of the true load transfer. In Appendix A, the contribution
¸�(y, t) to the lift from the aileron partition of the two-dimensional airfoil is derived,
resulting in

¸� (y, t)"
�
�
���

	(¸�qK
�
qK
�
#u¸�qR

�
#u�¸�q

�
q
�
). (15)

Given the total lift (14), the lift on the wing partition is simply ¸�(y, t)"¸(y, t)!¸�(y, t). As
shown in Appendix A, the moment can be separated in a similar fashion utilizing the aileron
hinge moment M�(y, t). With this formulation the aileron lift and hinge moment distribu-
tions can be integrated over the aileron for the total lift and moments

¸
�
(t)"�

�

l!l
�

¸� (y, t) dy, (16)

M
�
(t)"�

�

l!l
�

y¸�(y, t) dy, (17)

M� (t)"�
�

l!l
�

M�(y, t) dy, (18)

which are then transferred to the wing through the hinges. In the present work, the
computation of the total loads (16)}(18) is simpli"ed using the approximations (11)}(13) in
the aileron load distributions. Straightforward integration yields expressions in the kin-
ematic variables �w

�
�
�
w
�

�
�

��, in a form similar to equation (15).
Next, the loads from the aileron are transferred to the elastic axis at y"l!l

�
and l.

Recalling that the aileron hinge moment is transferred at y"l, a force and moment
equilibrium for the aileron gives

¸
�
(t)"¸

�
(t)!¸

�
(t), M

�
(t)"!(b!b

�
)¸

�
(t), (19, 20)

¸
�
(t)"M

�
(t)/l

�
, M

�
(t)"M� (t)!(b!b

�
)¸

�
(t), (21, 22)

where ¸
�
(t) is the lift from the aileron at y"l!l

�
etc.

The inertia forces from the aileron may be derived using for example the rigid-body
equations of motion. Note, however, that exactly the same approach as for the aerodynamic
loads can be used by utilizing the aileron mass distribution. The equations of motion for the
outer partition are now formulated by inserting the distributed loads ¸�(y, t) andM� (y, t)
as well as the loads from the aileron (in the generalized sense) into equations (1) and (2). The
equations of motion for the inner partition are given by direct application of Theodorsen's
lift and moment for the case without an aileron.

2.4. DISCRETIZED EQUATIONS OF MOTION

The continuous equations of motion are discretized using beam "nite elements with the
nodal degrees of freedom �w w� �� (Cook et al. 1989). Denoting the global vector of nodal
displacements w, the discretized equations of motion can be expressed in the form

MwK #Dw
 #Kw!	 (Q
�
wK #uQ

�
(k)w
 #u�Q

�
(k)w)

"q
�
�G#	 (q

�
�G#uq

�
(k)�G#u�q

�
(k)�), (23)
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where

K"K
�
#K�, D"�

�
K

�
#��K� (24, 25)

and the parameters �
�
"D*

�
/D

�
and ��"D*� /D� have been introduced for convenience.

The mass matrix M, the bending and torsional sti!ness matrices K
�
and K� as well as the

aerodynamic mass matrix Q
�

are all real and symmetric positive de"nite, while the
aerodynamic damping and sti!ness matrices Q

�
(k) and Q

�
(k) are, in general, complex and

nonsymmetric. Explicit aileron motion �(t) induces aerodynamic loads represented by the
vectors q

�
, q

�
(k) and q

�
(k), and mass coupling determined by q

�
.

2.5. ACTIVE CONTROL

Writing equation (23) in state-equation form with � (t) as control variable is nontrivial due
to the dependency on �Q (t) and �G (t). However, this obstacle is resolved by introducing an
actuator model having � (t) and �G (t) as dynamic states. The most simple model that ful"ls
this criterion and captures the essential dynamics of a servo actuator is given by

�G#2�
�
��Q #��

�
�"��

�
�
�
, (26)

where �
�
and � determine the speed and damping of the servo response, respectively, and

�
�
(t) is the setpoint for the servo. Introducing the state vector w

�
(t)"[�, �
 ]� gives the

standard state-equation form

w

�
"�

0

!��
�

1

!2�
�
�� w

�
#�

0

��
�
� �

�
. (27)

Now, the crucial observation is that the right-hand side of equation (23) can be written in
terms of the state vector w

�
(t) and its "rst time derivative. Consequently, by forming the

augmented state vector w
	
(t)"[w, w
 , w

�
]� the equations of motion (23) and the servo

dynamics (27) can be merged into the generalized state equation

M
	
w

	
"Q

	
(k, u)w

	
#q

	
�
�
, y"C

	
w

	
, (28, 29)

having the setpoint �
�
(t) for the servo as input and, in addition, some measured entities y (t)

in the form (29) as output.
The control objective in this study is to improve the stability of the wing by feedback

control of the aileron. Consider the block diagram in Figure 2 where P(u) represents the
aeroservoelastic plant and the remaining blocks represent a digital controller. Based on the
measured outputs y (t) and the #ow speed u, the task of the controller is to compute
a setpoint �

�
(t) such that the aeroservoelastic response w

	
(t) due to a #ow disturbance d(t)

(not accounted for in the model) is e$ciently suppressed.
The sampling and computational delays introduced when using a digital controller are

represented by the blocks K



and K�, respectively. A modi"ed continuous design as
described in Stevens & Lewis 1992 is used, where continuous approximations of the discrete
dynamics are used in the design of the controllerK(u). A 2-pole-2-zero PadeH approximation
of the transfer function for a sample-and-hold process with period ¹ seconds can be written
in the state equation form

w



"�

0

!20/¹�

1

!8/T� w


#�

0

1� �


, (30)

�
�
"[40/3¹� !14/3¹] w



#�



/3, (31)



KT K∆ K(u)

P (u)
y

d

�s

�T ��

�p

Figure 2. Block diagram illustrating the control objective.
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where the state vector w


(t) comprises two states. As shown in the "gure, the input �



(t) is

the signal to be sampled and the output �
�
(t) is the setpoint for the servo. The same

approximation for a computational delay of � seconds yields

w
 �"�
0

!12/��

1

!6/�� w�#�
0

1� ��, (32)

�


"[0 !12/�]w�#��, (33)

where �� (t) is the input signal to be delayed (see the "gure) and w�(t) is a state vector with
two states.

The modi"ed aeroservoelastic plant accounting for servo dynamics as well as sampling
and computational delays is now obtained by merging equations (28)}(33). The correspond-
ing state equation can be written in terms of the state vector w

�
(t)"[w

	
, w



, w�]�,

M
�
w

�
"Q

�
(k, u)w

�
#q

�
��, y"C

�
w

�
, (34, 35)

having the output �� (t) from the controller K(u) as input variable.
In this study, a simple output feedback controller is used, de"ned by

��"k�(u) y"k�(u)C
�
w
�
, (36)

where k(u) is a vector of feedback gains which may depend on the #ow speed u. Inserting the
control law (36) into the state equation (34) and transforming to the frequency domain using
w
�
(t)"wL

�
e	� yields the nonlinear generalized eigenvalue problem

�pL M�
!

b

u
(Q

�
(k, u)#q

�
k� (u)C

�
)� w;

�
"0, (37)

where the reduced eigenvalue p("pb/u has been introduced for convenience. The nonlin-
earity is due to the dependence on the reduced frequency k"�b/u, which is the imaginary
part of p( . For a given #ow speed u and feedback gain vector k (u) the eigenvalue problem (37)
is solved iteratively using the so-called p}k method (BaK ck & Ringertz 1997). The predicted
critical #ow speed u

����
at which an aeroservoelastic instability develops is computed by

solving the eigenvalue problem for a sequence of increasing #ow speeds, until an eigenvalue
with positive real part is detected.
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3. EXPERIMENTAL APPROACH

A schematic layout of the wind tunnel experiment is shown in Figure 3. All testing was
performed in a low-speed wind tunnel at KTH. The cross section of the 3)6 m� test-section is
square with corner "llets. The environmental test conditions were room temperature and
atmospheric pressure throughout the tests, with air density close to 	"1)18 kg/m�. This
value is therefore used in all subsequent analyses.

The very #exible wing was mounted vertically in the wind tunnel, hanging from the
ceiling of the test-section. Using the notation introduced in Figure 1, the wing has semispan
l"1 200 mm and semichord b"120 mm (giving an aspect ratio of 10). The wing was made
of orthotropic glass"bre-epoxy laminate with nominal thickness 3 mm, with the main
sti!ness axis aligned with the wing x- and y-coordinate axis. Thus, there is no be-
nding/torsion coupling due to the material anisotropy. The aileron with the same thickness,
length l

�
"352 mm and semichord b

�
"30 mm, consisted of a carbon "bre sandwich plate

for high sti!ness and low weight. To reduce air-#ow through the small gap between the
wing and aileron, a thin plastic "lm was used to cover the gap (attached only to the wing).

Two full-chord, slightly swept, vertical winglets were mounted at the wing tip to reduce
the "nite span e!ects not taken into account in the two-dimensional aerodynamic model.
Two inner winglets were also mounted, mostly to provide a "xture for the inner aileron
hinge. The inner winglets have �

��
the dimensions of the outer, which are given in Figure 3.

The aileron is controlled by a high-performance linear electric servo, enclosed by
a NACA 0012 airfoil-shaped cover at the wing tip. A linear potentiometer for measurement
of the aileron de#ection is also part of the wing tip assembly. Not to interact with the thin
wing aerodynamics, 35 �m thick adhesive copper foil was used for the wires to the servo and
potentiometer. The aerodynamic impact of the �l"43 mm rigid extension of the wing is
neglected.
3b/2

15b/8

∆l

Figure 3. Schematic layout of the wind tunnel experiment.



TABLE 1
Coordinates of the re#ecting markers

Marker x (mm) y (mm)

1 !112)5 636
2 112)5 636
3 !112)5 1 112
4 44)0 1 112
5 74)5 1 112
6 112)5 1 112
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The aeroelastic deformation of the wing was monitored by a noncontact optical measure-
ment system, capable of real-time three-dimensional tracking of re#ecting markers attached
to the wing. As shown in Figure 3, the present system is based on four CCD cameras with
built-in infrared #ashes, mounted in the wind tunnel walls. Hemi-spherical markers with
5 mm radius were used to measure the out-of-plane displacements at speci"c locations on
the wing. Although #at markers can be used, the hemispherical markers provided higher
robustness and accuracy. For the present con"guration, the marker displacements were
measured with a resolution of only a few hundreds of a millimeter. For more details on the
optical system the reader is referred to Kuttenkeuler (2000).

A numerical model with eight "nite elements for the inner wing partition and four for the
outer is used throughout the study. Based on this, six markers were attached to the wing at
two di!erent spanwise locations, both coalescing with nodes in the "nite element model.
Themarker con"guration is shown in Figure 3, drawn on the nearest side of the wing for the
sake of clarity. The coordinates of the marker locations are given in Table 1, where the
markers are numbered in consecutive order from the midwing leading edge marker to the
aileron trailing edge marker. The locations of the four markers on the wing were chosen to
give a reasonable observability of the dominant aeroelastic modeshapes. Expressed in terms
of the de#ection and twist angle of the elastic axis, the wing de#ections at the marker
locations are easily written in the form (29). By placing two markers on the aileron as well,
the optical measurement provided a simultaneous acquisition of the aileron de#ection at
�"�

�
. This feature will be utilized in Section 4.2.

3.1. STRUCTURAL PROPERTIES

Since the wing is mounted vertically, it may be necessary to consider gravitational e!ects.
Neglecting the gravity forces from the aileron, this can be accounted for in the bending
dynamics by introducing the term

f


(y, t)"g�m�

w�!��
�

�

m
�
dy#m

��w�� (38)

into the left-hand side of the equation of motion (1) for the outer wing partition (g is the
gravity acceleration), and adding the transverse force ¹



"gm

�
w� and bending moment

M


"gm

�
y
�
w� to the left-hand side of the boundary conditions (7) and (8), respectively

(PamKdoussis 1998). The corresponding term for the inner wing partition is obtained by
simply replacing m

�
with the total mass of the outer partition, and taking the integral to

y"l!l
�
. The result in the discretized equations of motion is a contribution K



to the

sti!ness matrix (24). The described correction is included in the aeroservoelastic model,



ACTIVE WING FLUTTER SUPPRESSION 281
mostly to isolate the structural sti!ness in the veri"cation of the structural model. The
gravity forces from the aileron are approximated by simply adding m

�
to the total wing tip

mass m
�
.

The wing tip and inner winglet assemblies are modelled as rigid bodies clamped to the
wing. The mass properties of each assembly were obtained by assembling the corresponding
properties of its components. For each component, the mass, dimensions and location of the
centre of mass were measured experimentally, while the rotary inertias were estimated
analytically. The resulting mass properties and coordinates of the mass centres are given in
Table 2. The corresponding properties of the aileron are also given.

Given the wing laminate density 	
�
and chord c

�
, the rectangular wing section has mass

per unit length m
�

"	
�
c
�
h and mass moment of inertia per unit length

J�"m
�
(c�

�
#h�)/12. Note that c

�
"2b in the inner partition and c

�
"2(b!b

�
) in the

outer. Based on plate theory, the beam sti!nesses are D
�
"c

�
D

��
and D�"4c

�
D

		
, where

D
��

andD
		

are the orthotropic plate sti!nesses de"ned inWeisshaar & Foist (1985). In the
same manner, D*

�
"c

�
D*

��
and D*� "4c

�
D*

		
, where D*

��
and D*

		
are the corresponding

coe$cients in the viscoelastic plate model. The plate sti!nesses of the wing laminate was
determined from a rectangular test specimen using the dynamic method described by
Kuttenkeuler (1999). The experimentally determined laminate properties can be found in
Table 3. For completeness, all the orthotropic plate sti!nesses are presented.

3.2. STRUCTURAL DYNAMICS

The frequency and modal damping of the free vibrations of the hanging cantilever wing
(with the aileron "xed at �"0) is computed by solving the eigenvalue problem (37) for
TABLE 3
Experimentally determined laminate properties

Property Value Unit

h 3)06 mm
	
�

1926 kg/m�
D

��
65)9 N m

D
��

9)54 N m
D

��
59)4 N m

D
		

14)1 N m
D*

��
9)66�10
� N m s

D*
		

3)37�10
� N m s

TABLE 2
Experimentally determined mass properties

Property Inner winglet Wing tip Aileron Unit

m 4)11�10
� 4)60�10
� 6)57�10
� kg
J
�

1)73�10
� 7)15�10
� 6)78�10
� kg m�
J
�

4)74�10
� 2)34�10
� 1)98�10
� kg m�
J
��

0 !2)17�10
� 0 kg m�
x 70)5 !2)0 90)0 mm
y 634)5 1209 1024 mm



TABLE 4
Comparison between predicted and experimental eigenfrequen-

cies

Mode fpred (Hz) fexp (Hz)

1B 1)0 1)0
2B 5)9 5)9
1T 7)3 7)4
3B 17)0 16)7
2T 21)3 22)5
4B 34)3 34)3
3T 39)0 42)9
5B 54)5 54)0
4T 62)0 72)3
6B 80)9 78)5
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u"0 and k"0. The vibration analysis thus obtained accounts for both gravity (to some
extent) and the added mass due to the surrounding air. Neglecting the structural damping
(D*

��
"D*

		
"0), the 10 lowest predicted eigenfrequencies ( f

����
) are compared to experi-

mental values ( f
���

) in Table 4. The experimental frequencies were obtained by modal
analysis. The mode denoted 1B is dominated by the "rst decoupled bending mode, 2T by
the second torsion mode, etc. All the bending modes show excellent agreement between
theory and experiment, while the accuracy for the torsion modes deteriorates with fre-
quency. Considering the simplicity of the structural model, the general agreement is
considered to be satisfactory.

The values of the two viscoelastic parameters D*
��

and D*
		

given in Table 3 were
determined by matching the modal damping (the real part of the eigenvalues) of the second
bending (2B) and "rst torsional (1T) eigenmodes to experiments. Accounting for the
damping has a negligible in#uence on the frequencies in Table 4.

3.3. FLUTTER EXPERIMENTS

The accuracy of the aeroelastic stability analysis was investigated by performing #utter
testing of the wing, with the aileron "xed at �"0. Figure 4 shows a root-locus plot of the
four leading eigenvalues obtained by solving the eigenvalue problem (37) from u"5 m/s
(marked by &&

3
'') to critical speed (marked by &&�''). Mode A is a #utter mode in#uenced by

the second bending and "rst torsional structural modes, with frequency in the 6 Hz range.
Mode B is the classical #utter mode which couples the "rst bending and "rst torsional
modes. The frequency of mode B decreases signi"cantly with #ow speed, ending up in the
3 Hz range. The low-frequent #utter mode C is mostly in#uenced by the "rst structural
bending mode, and is stabilized for increasing #ow speed. At u"16)6 m/s the divergence
mode D appears, which is the mode that "nally becomes unstable at u"20)8 m/s.

The wing is thus predicted to diverge at the critical speed u
����

"20)8 m/s. However, in
the wind tunnel test the wing su!ered a #utter instability at u

���
"15)4 m/s. By recording

the limit cycle motion with the optical system, a closer investigation revealed that the
experimental #utter frequency was 6)4 Hz. Further, the modeshape was clearly in#uenced
by the second structural bending mode. With these results at hand, the somewhat unex-
pected result can be explained by considering the root-locus plot again. At u"16)2 m/s
mode A is the closest to instability (marked by &&H'' in the root-locus plot), but is then
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stabilized again for increasing speed. The predicted frequency at this speed is 6)4 Hz. The
conclusion is that mode A becomes unstable in the experiment at a speed which is
supported by the stability analysis. While the aeroelastic analysis predicts the #utter
frequency of this mode fairly well, it is not fully capable of predicting the modal damping.
Increasing the #ow speed further resulted in a rapid growth of the #utter amplitude, which
made further (reasonably safe) experimental investigations impossible.

4. ACTIVE CONTROL

Provided that the aeroservoelastic analysis is su$ciently accurate for control law design,
a stabilization of mode A could be very pro"table in terms of increased #utter speed. For
example, suppressing the modeA #utter without a!ecting the other modes would, in theory,
give an approximately 30% increase in critical speed. An initial strategy for the control law
design is thus to "nd a controller in the form (36) that stabilizes modeA exclusively. Prior to
giving an example of such a design, some results on the actuator performance and the
response due to aileron motion are presented.

4.1. SERVO IDENTIFICATION

As suggested by Waszak & Fung (1996), the parameters w
�
and � in the actuator model (27)

are identi"ed by matching the magnitude and phase of the servo frequency response
function (FRF) to experimental data. A personal computer with the LabVIEW software
(Johnson 1994) was used to command a sinusoidal aileron motion with 63 amplitude, with
the setpoint updated at a rate of 100 Hz. The aileron response was measured for a sequence
of frequencies in the range 2}8 Hz (the expected bandwidth of the aeroservoelastic re-
sponse), using the potentiometer mounted at the wing tip. Data reduction using fast Fourier
transform (FFT) analysis gave the experimental frequency response represented by the
discrete data points in Figure 5.

The hold delay introduced by the digital control of the servo is compensated for by
merging the servo dynamics (27) with equations (30) and (31) and using �



as input. This
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means that the FRF between �


and �, with ¹"1/100 s, is used for the identi"cation. The

servo parameters are determined by minimizing the weighted sum square error

��(�
�
, �)"

�
�
���

(��)�
�
#�

�
�
���

(��)�
�

(39)

of the n"13 magnitude and phase errors ��"�
���

!�
����

and ��"�
���

!�
����

, respec-
tively. The weight � determines how the magnitude and phase are emphasized in the
identi"cation. Using �"1/100 rad
� resulted in �

�
"84)3 rad/s and �"0)754. The corre-

sponding FRF is represented by the solid lines in Figure (5). Good agreement between the
predicted and experimental FRFs is achieved, indicating that the servo dynamics is well
modelled by equation (27).

4.2. OPEN-LOOP EXPERIMENTS

Experimental open-loop testing was performed in order to verify the in#uence of the aileron
on the system dynamics. Since the accuracy of the aeroservoelastic analysis close to the
#utter boundary is of particular interest, the #ow speed u"15 m/s was chosen in the
open-loop experiments. The displacement response of the wing due to sinusoidal aileron
motion in the range 2}8 Hz was measured at a rate of 240 Hz using the optical system. The
commanded amplitude for the aileron de#ection was 33 throughout the measurements, and
the setpoint for the servo was updated at a rate of 100 Hz.

The aileron de#ection at the spanwise location �"�
�

was estimated based on the
measured out-of-plane marker displacements of markers 3 and 4 on the wing and markers
5 and 6 on the aileron (see Figure 3). Accurate time control is of vital importance to obtain
relevant phase data. In this respect, the main advantage of measuring the aileron de#ection
using the optical system is that the aileron and wing motion are measured simultaneously.

The magnitude and phase of the experimental FRF between the aileron de#ection and
the marker 1 displacement (midwing-leading edge) are shown in Figure 6. At low frequen-
cies the wing displayed a motion resembling the "rst structural bending mode. While a very
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modest response was found in the 3}5 Hz range, a sharp resonance with a second bend-
ing-"rst torsion modeshape was observed at 6)4 Hz, revealing the approaching #utter
instability.

The theoretical FRFs between the true aileron de#ection �* (y, t) and the marker displace-
ments may be computed as follows. Inserting a known aileron motion (at the wing tip)
�(t)"�K e��� and an expected response w (t)"w( e��� (wherew( is complex) into the equations of
motion (23) results in a linear system of equations for the vector z"w( /�K in the form

Q(�, u) z"q (�, u). (40)

This vector clearly represents the FRFs between the aileron de#ection at the wing tip and
the nodal displacements in the "nite element model. With known FRFs z�

�
and z�

�
(elements

of z) for the twist angles �
�
(t) and �

�
(t), the FRFs between the true aileron de#ection in (13)

and the nodal displacements in the "nite element model are given by

z*"
z

1#(1!�)(z�
�
!z�

�
)
. (41)

Finally, the FRFs for the marker displacements follow from the corresponding output
relation in the form (29).

The theoretical FRF for the marker 1 displacement is represented by the solid lines in
Figure 6, where it is observed that the general characteristics are well represented by the
model. Both the resonance frequency and the phase are predicted with good accuracy, while
the magnitude is clearly over-predicted throughout the entire frequency range. Strip theory
is well known to over-predict the unsteady aerodynamic loads (Bisplingho! et al. 1996),
especially towards the wing tip where the aileron is located. Although this e!ect to some
extent is compensated for by the winglets, the over-prediction of the magnitude is evident.
An aerodynamic model based directly on Theodorsen's lift and pitching moment resulted in
an almost identical frequency response, indicating that the pressure distribution over the
wing part of the wing}aileron section is the dominant contribution to the aerodynamic
loads due to aileron motion.
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A control law design based on the present model would most likely fail due to the too
optimistic in#uence of the aileron. The decision was thus made to introduce a model
correction based on the open-loop results. The most obvious correction is to scale the
right-hand side of the equations of motion (23) by a real factor to reduce the magnitude
response without a!ecting the phase. The dashed magnitude response shown in Figure 6 is
the result of scaling by a factor of 2, giving an updated model with satisfactory accuracy in
the phase as well as magnitude. The described model correction was implemented in the
closed-loop stability analysis by using the input vector

q*
�

"q
�
/2 (42)

instead of q
�

in the closed-loop eigenvalue problem (37).
The coupling between the torsional deformation and the aileron de#ection can be

observed in the open-loop results. Figure 7 shows the amplitude of the measured aileron
de#ection (normalized with the setpoint amplitude) versus frequency. The torsional defor-
mation of the wing at the resonance frequency results in a distinct dip in the measured
aileron de#ection. The solid curve represents the predicted amplitude of the aileron
de#ection at �"�

�
, including the servo dynamics and hold delay. The descent of the

amplitude due to the servo response is evident (compare with Figure 6), as well as the dip
due to the coupling. Note that the coupling is proportional to (1!�), which means that the
observed coupling is only �

�
the coupling at �"0. The reason for the somewhat worse

agreement between theory and experiment at low frequencies (where "rst mode bending is
dominant) is most likely the neglected bending coupling.

4.3. CONTROL LAW DESIGN

Regardless of the control law used for suppressing the mode A #utter, the essential e!ect
is that the eigenvalue p(

�
is shifted to the left in the root-locus plot in Figure 4. A straightfor-

ward approach to achieve this with the output feedback controller (36) is to minimize the
real part of the eigenvalue p(

�
using the feedback gains in k as design variables. The

maximum feasible level of actuation is enforced by constraining the squared norm of the
feedback gain. For a "xed #ow speed u the nonlinear optimization problem is posed as

minimize

k

subject to

Re p(
�
(k, u)

k�k4k�
�
,

(43)

(44)
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where p(
�

is the eigenvalue obtained by solving the eigenvalue problem (37) with the
correction (42), and the maximum feasible norm of k is denoted k

�
. The optimization

problem (43), (44) is solved using the method of moving asymptotes (MMA) by Svanberg
(1993). The derivative of the objective function exists provided that the eigenvalues are
distinct, and is derived as described in Haftka & Adelman (1993). Further, if a particular
optimal solution k* (u) exists on some interval of the #ow speed u, the solution is continuous
(but not necessarily continuously di!erentiable) on this interval, since both the eigenvalues
and the quadratic constraint (44) are continuous functions of the feedback gains and #ow
speed, respectively (Ringertz 1997). Solving the optimization problem for a sequence of #ow
speeds u

�
, i"12 n

�
, provides a set of optimal feedback gain vectors k*

�
(u

�
) which are used

for gain scheduling.

4.3.1. Control system parameters

By considering the servo response due to a given #utter motion of the wing, the norm
k
�
can be related to the maximum aileron de#ection �

�
and rate �Q

�
provided by the servo.

Suppose that the wing oscillates with frequency �
�
at an amplitude with maximum output

norm y
�
. Taking the norm of the control law (36) and the "rst time derivative of it, the

maximum feasible norm is obtained as

k
�
"min �

�
�
y
�

,
�

�

�
�
y
�
�. (45)

E!ectively, this constraint means that the servo will not saturate for a #utter motion with
frequency �4�

�
and output norm �y�4y

�
. If actuator saturation is not a concern, the

constraint based on the maximum servo de#ection (for a speci"ed output norm) can be used
to impose conditions for which the linear model is likely to be valid. Of course, if the #utter
suppression is successful, the motion of the wing will remain small.

The measured displacements of markers 1}4 located on the wing (see Figure 3) were
chosen for feedback. Based on �

�
"63 and y

�
"0)01 m, assumed to represent a motion in

the linear regime, the maximum feasible norm k
�
"10�/3+10)5 rad/m was chosen. The

maximum de#ection and rate of the aileron were approximately 203 and 5003/s, respective-
ly. Hence, for a #utter motion with frequency 6)4 Hz (the frequency of the mode A #utter)
the servo will not saturate (in rate) until an output norm y

�
+0)02 m is reached.

To determine the sampling frequency ¹ and computational delay � required in the
modi"ed aeroservoelastic model, a dummy control law based on linear interpolation for the
gain scheduling was implemented in the experiment. In combination with the optical
system, running in real-time mode, a 90 Hz closed-loop frequency was achieved. The
sampling period ¹" �

��
s was thus used in the approximation of the sample-and-hold

dynamics. An infrared sensor was used to measure the computational delay between a #ash
from the cameras and the arrival of the setpoint at the servo. The result was �"24 ms.

4.3.2 Design optimization

With the control system parameters settled, the optimization problem (43)}(44) was
solved for the #ow speeds u"�5, 5.2, 5.4,2, 25� m/s, giving a total of n

�
"101 prob-

lems to solve. The initial value k"0 was used for the "rst problem (u"5 m/s), while for the
successive problems the solution of the previous optimization was used as initial values.
Each optimization run was terminated when the residual in the design variables
was (10
� (rad/m) between consecutive iterates. The "rst problem was solved in
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approximately 20 iterations, while the remaining were solved in 5}10 iterations due to the
more appropriate initial values.

The optimal feedback gains for the four marker displacements are plotted versus #ow
speed in Figure 8. The gain for marker 1 is denoted k

�
etc. The constraint (44) was active for

all airspeeds, meaning that the controller uses full actuation throughout the considered
speed range. Since markers 1 and 2 are located symmetrically with respect to the elastic axis,
the de#ection of the elastic axis at this spanwise location is proportional to the sum of the
marker 1 and 2 displacements, while the twist angle is proportional to the di!erence.
Considering the graphs for the corresponding gains in Figure 8, the result can be interpreted
as if the control law emphasizes feedback of torsional deformation at low speeds and
bending deformation at high speeds.

4.4. CLOSED-LOOP CONTROL

The closed-loop root-locus plot corresponding to the control law in Figure 8 is shown in
Figure 9. Compared with Figure 4, the mode A root-locus is clearly shifted to the left. For
the particular choice of feedback norm, the control law has only limited in#uence on the
other modes. It should be emphasized that the in#uence on the other modes was not
considered in the control law design. Unlike the open-loop case in Figure 4, mode C turns
back in the speed range 11)4}13)2 m/s, but is then stabilized as before. The divergence mode
D is actually stabilized by the control action. Mode B, which is hardly a!ected at all, is the
mode that "nally becomes unstable at the predicted critical speed u

����
"20)8 m/s. By

coincidence, the wing is thus predicted to become unstable at the same critical speed as
without control system, but this time in a 2)9 Hz bending}torsion #utter mode.

Experimentally, the controller performed well. The wing remained stable as the speed was
increased above the open-loop #utter speed u"15)4 m/s. In Figure 10, the measured
displacement of marker 2 (mid wing-trailing-edge) at u"18)0 m/s is shown for the cases
with and without active control, respectively. With active control the displacement is visible
as a small limit cycle motion, but the #utter is e$ciently suppressed. This residual motion is
expected due to both a "nite resolution in the displacementmeasurements and a mechanical
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play in the servo mechanism. The maximum amplitude of the residual motion was
approximately 0)5 mm for all markers and considered speeds, which is of the same order as
the subcritical response due to the #ow disturbances in the wind tunnel. The result is
therefore considered satisfactory. The scenario when the controller is turned o! (�"0) at
t"0 is shown by the superimposed graph in Figure 10. Violent #utter developed within
a few seconds.

Although the linear theory used for the controller design lacks the capability of predicting
the response after stability is lost, an experiment on the capability of the controller to
suppress large-amplitude #utter was performed. Still at the speed u"18)0 m/s, the motion
was allowed to grow by turning o! the controller, after which the controller was turned on
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again. The controller succeeded with this task as well, as shown by the marker 2 displace-
ment in Figure 11.

Increasing the speed further, it was noted that the amplitude of the residual limit cycle
motion shown in Figure 10 was reduced. This indicates that mode A is stabilized when the
speed increases, as predicted in Figure 9. However, mode A #utter eventually developed if
the controller was turned o!. The wing "nally su!ered a 3)5 Hz bending}torsion #utter
instability at the critical speed u

���
"23)0 m/s. Both the critical speed and the frequency of

the aeroservoelastic #utter correspond well with the prediction.

4.5. DISCUSSION OF THE CONTROL LAW DESIGN

Since the prediction of the real part of the critical eigenvalue was somewhat inaccurate,
closed-loop stability was not guaranteed prior to the experimental testing. For the particu-
lar choice of feedback norm the optimal control law did provide a shift of the critical
eigenvalue su$ciently large to stabilize the mode A #utter in the experiment. However,
increasing the maximum feasible feedback norm further results in a most signi"cant
in#uence on the modes not considered in the optimization.

To account for several modes in the optimization one may consider the minimax
formulation

minimize maxRe pL
�
(k, u), i"1,2, n

	
(46)

k
subject to k�k4k�

�
(47)

instead of equations (43) and (44). The minimax formulation (46) and (47) is inherently
nonsmooth but is easily reformulated as a smooth optimization problem (Ringertz 1997).
Unfortunately, a straight-forward application of the minimax formulation can result in
a control law with very poor robustness to modelling uncertainties. Consider for example
the present case where a mode is predicted to be stable but is actually unstable in the
experiment. The optimizer may then focus on suppressing the wrongmode and the resulting
controller will not stabilize the system in practice.
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The use of optimization techniques for control law design is appealing, both in terms of
being straightforward and that good performance can be obtained using quite simple
control laws. In the present study only one parameter (the maximum feasible norm of the
feedback gain) was set prior to the control law design. As indicated above, care must
be taken when using optimization for design. To obtain a robust optimal control law,
modelling de"ciencies and system uncertainties have to be accounted for. This process "rst
involves modelling and estimation of the uncertainties in the aeroservoelastic system (Lind
& Brenner 1999) and then a reformulation of the optimization problem to take these into
account. The formulation of optimization problems taking uncertainties into account is
a current topic of research, discussed in for example Kuttenkeuler & Ringertz (1998b).

5. CONCLUSIONS

The rather simple aeroservoelastic analysis was found to predict the essential dynamics of
the investigated system surprisingly well. Strip theory was veri"ed by experimental open-
loop testing to over-predict the response due to motion of the aileron. By introducing
a straightforward model correction, based on the open-loop characteristics, su$cient
accuracy for control law design was achieved.

The proposed control strategy was found to be successful. An approximately 50%
increase of the critical speed was achieved in the experiment, which corresponds to more
than a doubling of the critical dynamic pressure. However, it should be recognized that this
signi"cant improvement was made possible by the rather weak #utter instability. Sup-
pressing the more aggressive mode B #utter would most likely require modi"cations of the
control system and/or the wing itself (using for example multiple control surfaces).

It should be stressed that the external optical system used for capturing the structural
deformation would not be possible to implement in a real #ight situation. In general,
dynamic output such as structural accelerations provided by properly located acceler-
ometers would be better for controlling a #utter instability. However, evaluating the
real-time capabilities of the optical system was an important part of this study. The system
performed beyond expectation in terms of accuracy and robustness, and is undoubtedly
a very useful tool in experimental aeroelasticity.

An interesting continuation of this work would be to investigate how a re"ned aeroelastic
analysis based on plate theory and three-dimensional unsteady aerodynamics improves the
results. A perhaps more interesting approach would be to develop an uncertainty model for
the present system and perform a robust control law design. The present study indicates that
the main source of uncertainty is the de"ciencies of the model used for the unsteady
aerodynamic loads, and also that e!ects due to structural damping and gravity can be
neglected with maintained accuracy in the aeroservoelastic stability analysis. Further, it
appears as if the pressure distribution over the wing part of the wing}aileron section is the
dominant contribution to the aerodynamic loads due to aileronmotion. Hence, using a model
where the aerodynamic load on the aileron is transferred along the wing}aileron intersection
is not only convenient but also a fairly good approximation of the true load transfer. The e!ect
on the local aileron de#ection due to wing}aileron elastic coupling was veri"ed experimentally,
and may be important to model if torsional deformation dominates the #utter modeshape.
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APPENDIX A: AERODYNAMIC INFLUENCE COEFFICIENTS

In the following, the unsteady aerodynamic forces acting on the aileron and wing partitions
of a typical section are derived based on the work of Theodorsen (1935). Theodorsen
considers a two-dimensional thin airfoil in an incompressible #ow with freestream velocity
u and density 	. This is illustrated in Figure A1 with notation as de"ned in Section 2.1.
Assuming simple harmonic motion with frequency �, the unsteady pressure di!erence
�p(x, t) between the pressures on the upper and lower sides of the airfoil is derived. In terms
of the kinematic variables q(t)"�w, �, �� the total lift ¸(t) can be written as

¸(t)"!�
�


�

�pdx"
�
�
���

	 (¸qK
�
qK
�
#u¸qR

�
qR
�
#u� ¸q

�
q
�
). (A1)

The total pitching momentM(t) acting around the elastic axis (located at x"ba) and the
aileron hinge momentM�(t) acting around the hinge axis (located at x"bc), are given by
the corresponding sets of coe$cients �MqK

�
MqR

�
Mq

�
� and �M�qK

�
M�qR

�
M�q

�
�.

The separated formulation used in this work is obtained by partitioning the lift according
to

¸(t)"!�
�


�

�pdx"!�
��


�

�pdx!�
�

��

�pdx"¸�(t)#¸�(t), (A2)

where ¸�(t) and ¸�(t) are the contributions from the aileron and wing, respectively. The
pitching moment M(t) can be separated in exactly the same manner, but the contribution
M�(t) from the aileron is more conveniently written in the form

M� (t)"�
�

��

(x!ba)�pdx"�
�

��

(x!bc)�pdx

#�
�

��

(bc!ba)�pdx"M� (t)!b(c!a)¸�(t). (A3)

Since the aileron hinge momentM� (t) is known, only the lift ¸�(t) needs to be computed to
obtain a separated two-dimensional formulation. The integrals involved in the computation
of ¸�(t) are part of Theodorsen's derivation of the hinge moment, reducing the problem to
a matter of extracting the coe$cients �¸�qK

�
,¸�qR

�
, L�q

�
�. With these at hand, the coe$cients for

¸�(t) andM�(t) follow from equation (A2) and the corresponding equation for the partition-
ing of the moment.
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Figure A1. A thin airfoil in incompressible #ow.
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Based on Theodorsen's result the following constants are introduced:
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The coe$cients for ¸(t) and ¸�(t) may then be written as
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and likewise for M(t) and M�(t):
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The dependence on the reduced frequency of oscillation k"�b/u is determined by
Theodorsen's functionC(k), which can be written in terms of Hankel functions of the second
kind, as

C(k)"
H���

�
(k)

H���
�

(k)#iH���
�

(k)
. (A7)
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